Circles and tangents Question If from any point on the circle x 2 + y 2 +2gx + 2fy + c = 0, tangents are drawn to the circle x 2 + y 2 + 2gx + 2fy + csin 2 α + (g 2 + f 2 )cos 2 α = 0, then angle between the tangents is Concepts used - Circle with equation x 2 + y 2 + 2gx + 2fy + c = 0, has center at (-g,-f) and radius √(g 2 +f 2 -c), √ (g 2 +f 2 -c) - sin 2 + cos 2 = 1 Answer Rearrange the equation of circles to find the centers and radii Circle 1 - x 2 + y 2 +2gx + 2fy + c = 0 x 2 + y 2 +2gx + 2fy + c = 0 x 2 + y 2 +2gx + 2fy + g 2 + f 2 = g 2 + f 2 - c (x+g) 2 + (x+f) 2 = (√(g 2 +f 2 -c)) 2 Circle 2 - x 2 + y 2 + 2gx + 2fy + csin 2 α + (g 2 + f 2 )cos 2 α = 0 x 2 + y 2 + 2gx + 2fy + g 2 + f 2 = g 2 + f 2 - csin 2 α - (g 2 ...