Skip to main content

ISRO 2014 Mechanical Engineering Questions, Answers and Explanation

ISRO 2014 Mechanical Engineering Questions, Answers and Explanation

18. Tension in the cable supporting a lift of weight 'W' and having an acceleration 'a' while going upward is (g is acceleration due to gravity)
a) W(1+a/g)
b) W(1-a/g)
c) W(2+a/g)
d) W(1+2a/g)

Answer
a) W(1+a/g)

Explanation [Engineering Mechanics]
Tension increases when the lift accelerate upwards and decreases when the lift accelerate downwards.
Mass of the lift = W/g
Increase in tension due to acceleration = mass of list * acceleration of lift = W/g*a
Total tension = Tension due to gravity + Tension due to acceleration
 = W + W/g*a = W(1+g/a)

2014. 80. Which type of gear meshing should be employed to transmit torque to a linear force?
a) Epicyclic gear
b) Helical gear
c) Bevel gear
d) Rack and pinion
Answer
d) Rack and pinion
Explanation [Theory of Machines and Mechanical Vibrations]
Epicyclic gear trains have one or more axes of gears in motion. In all other gear types the gear rotates about an axis but the axis does not move.
Helical gears are smoother in operations and create a thrust load and hence required support to compensate this load. They can also be used to transmit torques at 90o 
Bevel gears are the ones in which the axes of gears intersect normally at 90o. But they can work at other angles also.
Rack and pinion gears are used to convert rotation into linear motion.


Popular posts from this blog

The Da Vinci Code trip

Chapter I of the novel begins with Robert Langdon asleep in the Ritz Hotel. Our trip begins with ourselves just outside the Ritz Hotel. One of the posh hotels with a lot of high end luxury cars parked outside. Ritz Hotel, Paris Sitting up now, Langdon frowned at his bedside Guest Relations Handbook, whose cover boasted:     SLEEP LIKE A BABY IN THE CITY OF LIGHTS. SLUMBER AT THE PARIS RITZ. In the beginning on his way to Louvre - The crisp April air whipped through the open window of the Citroën ZX as it skimmed south past the Opera House and crossed Place Vendôme . As the Citroën accelerated southward across the city, the illuminated profile of the Eiffel Tower appeared, shooting skyward in the distance to the right. Symbologists often remarked that France—a country renowned for machismo, womanizing, and diminutive insecure leaders like Napoleon and Pepin the Short—could not have chosen a more apt national emblem than a thous...

ISRO 2017 December Mechanical Questions, Answers and Explanation

ISRO 2017 December Mechanical Questions, Answers and Explanation Question Set E 1. The specific metal cutting energy is expressed as a)  τ cos(β - α) ⁄ sin φ cos(φ+β-α) b)  τ sin(β - α) ⁄ sin φ cos(φ-β+α) c)  τ cos(α - β) ⁄ sin φ cos(φ-β+α) d)  τ sin(α - β) ⁄ sin φ cos(φ+β-α) where  α is rake angle,   β is friction angle,  φ is shear angle and    τ is the shear stress. Answer a)    τ cos(β - α) ⁄ sin φ cos(φ+β-α) Explanation [ Manufacturing Technology ] Specific metal cutting energy is defined as the energy expended in removing a unit volume of work-piece material.  = Energy/Volume Removed Energy = Force of cut x velocity of tool Volume Removed = Velocity of tool x Width of cut x Depth of cut Specific metal cutting energy = Force of cut/(Width of cut x Depth of cut) Shear force = shear stress x Area of shear  =  τ  x width of cut x depth of cut /sin  φ Shear force/Force of cut ...

ISRO Mechanical Strength of Materials Questions, Answers and Explanation

Strength of Materials Simple Stresses and Strains 2017.2.9.  Which of the following is true for ductile materials? a) Engineering stress – strain curve cannot have negative slope b) Most applicable failure theory is maximum principal stress theory c) Ultimate strain is the strain at ultimate stress d) Strain hardening is represented by a negative slope in engineering stress strain curve Answer c)  Ultimate strain is the strain at ultimate stress Explanation  Principal stress theory is applicable for brittle materials. Elastic Constants 2017.2. 2.  For isotropic materials, the modulus of Elasticity in tension and shear (E and G) are related to the Poisson's ratio (&nu) as follows a) E = G/(2(1+ν)) b) G = E/(2(1+ν)) c) G = E/(2(1-ν)) d) E = G/(2(1-ν)) Answer b) G = E/(2(1+ν)) Explanation Derivation of relation between Modulus of elasticity in tension and shear Torsion 2017.2.76.  A 3m l...